Abstract
Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of β-cell dysfunction in diabetes. Epigenetic mechanisms govern cellular glucose sensing and GSIS by β-cells, but they remain incompletely defined. Here, we found that BAF60a functions as a chromatin regulator that sustains biphasic GSIS and preserves β-cell function under metabolic stress conditions. BAF60a was downregulated in β-cells from obese and diabetic mice, monkeys, and humans. β-cell-specific inactivation of BAF60a in adult mice impaired GSIS, leading to hyperglycemia and glucose intolerance. Conversely, restoring BAF60a expression improved β-cell function and systemic glucose homeostasis. Mechanistically, BAF60a physically interacted with Nkx6.1 to selectively modulate chromatin accessibility and transcriptional activity of target genes critical for GSIS coupling in islet β-cells. A BAF60a V278M mutation associated with decreased β-cell GSIS function was identified in human subjects. Mice carrying this mutation, which disrupted the interaction between BAF60a and Nkx6.1, displayed β-cell dysfunction and impaired glucose homeostasis. In addition, GLP-1R and GIPR expression was significantly reduced in BAF60a-deficient islets, attenuating the insulinotropic effect of GLP-1R agonists. Together, these findings support a role for BAF60a as a component of the epigenetic machinery that shapes the chromatin landscape in β-cells critical for glucose sensing and insulin secretion.





